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1. INTRODUCTION

For 1 :0( P < 00, let L p = L p [0, 1] denote the Banach space of pth power
Lebesgue integrable functions on [0, 1] with Ilfllp= (g IfIp)Ilp. Let
M p C L p denote the closed convex lattice of nondecreasing functions in L p.
Then, g' E M p is called a best nondecreasing L p approximation to f E L p if
and only if

Ilf - g*llp:o( Ilf - gllp for all g E M p •

Throughout this paper, whenever ambiguity will not result, g* may
alternatively be called a best isotone approximation or simply a best
approximation.

For 1:0( p < 00, each f E L p has a best nondecreasng L p approximation.
For 1 < p < 00, the best approximation is unique, using the usual conven
tion that any two functions in L p are equal if they differ on at most a set
of Lebesgue measure zero. This convention will be employed throughout
this paper.

Constructive solutions to this approximation problem are presented in
[3] for p = 1, and in [8] for 1 < P < 00. The L oo case is considered in
[9, 1OJ.

In Section 2 of this paper we present an alternative characterization of
such best approximations. In Sections 3 and 4 this new characterization is
used to develop algorithms for the computation of best monotone L z
approximation.
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2. CHARACTERIZATION OF BEST MONOTONE ApPROXIMATION
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From the duality theory [4], for 1 < P < 00, g* E M p is the best
approximation to f E L p if and only if

(1)

where for any g E L p

(2)

For p = 1, g* E M j is a best approximation to f E L) if and only if there
exists a rP g * E L oo with

such that

rrPg*(f - g*) =r If - g*1
o 0

and such that (1) holds for all gEM j •

Because of (3), (4) can be replaced by

(3 )

(4)

rPg*(x) = sgn(f(x) - g*(x)) whenever f(x) #g*(x). (4a)

Note that for p= 1, rP g * may not be well-defined by (3)and (4).
This characterization of best isotone approximation depends on the

convexity of M p , and does not utilize the monotonicity of its elements. We
shall present an alternative characterization which does utilize the
monotonicity, and which is simpler than the above in the sense that unlike
(1) which depends on f, g* and all gEMp , the necessary and sufficient
conditions of the new characterization theorem depend solely on f and
g*. Furthermore, several interesting results follow directly from this
new characterization, induding algorithms for the computation of best
approximations.

DEFINITION 1. For 1~ p < 00 let f E Lp , let g* be a best approximation
to ffrom M p , and let rPg * be as defined either by (2) for 1<p < 00, or by
(3) and (4) for p=1 (with the noted possible ambiguity). Then define

for x E [0, 1]. (5)



60 SWETITS, WEINSTEIN, AND XU

THEOREM 1 (Characterization of Best Nondecreasing Approximation).
For 1~ p < 00, g* is a best approximation from M p to f E Lp if and only if

hg*(t) ~° for all t E [0, 1],

hg*(l)=O,

(6)

(7)

and

if hg*(t) >°then g* is constant in a neighborhood oft E (0, 1). (8)

{

g(X),

gn(x) = -n,

n,

(9)

Then, pointwise gn -+ g, gAg* -+ g<pg*, and !gn<Pg*1 ~ Ig<pg*l. By the
Lebesgue Dominated Convergence Theorem,

rgn<Pg* -+rg<pg*.
o 0

Using integration by parts

( gn<Pg*= - ( hg* dgn

~o

Thus,

by (7)

by (6) and since gn is nondecreasing.

by (6) and (8).

Similarly, we can define g~ as in (9) with g* replacing g. Then as aboveng::<pg* -+ J6 g*<pg*, and integrating by parts

J
I I

g::<pg*= -J hg*dg:: =0,
o 0

Thus,

for all g E M p •

Therefore, by (1), g* is the best approximation to f
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For the case p = 1, Theorem 1 should be interpreted to mean the
following: g* is a best approximation from M j to fELl if and only if there
exist a rP g ' satisfying (3) and (4) and corresponding hg • satisfying (6),
and (8).

In each of the following corollaries to Theorem 1 assume that 1~
p < 00, f E Lp , and g* is a best nondecreasing Lp approximation to f on
[0, 11

In general g* is not also a best approximation to f on an arbitrary sub
interval of [0, 1]. However, we have the following:

COROLLARY 1. (a) Let IX E (0, 1) such that g* is not constant on any
neighborhood of IX. Then, g* is also a best approximation to f on both [0, IX]

and [IX, 11
(b) Let 0< IX < 13 < 1, such that g* is not constant on any

neighborhood of IX, and is also not constant on any neighborhood of fl. Then
g* is also a best approximation to f on [1X,I3]'

Proof (a) To show that g* is a best approximation on [0, IXJ we will
show that conditions (6), (7), and (8) of Theorem 1 hold with the interval
[0, 1J replaced by [0, IX1

Since g* is best on [0, 1J, (6) and (8) imply the corresponding conditions
on [0, IXl Furthermore, since g* is not constant on any neighborhood of
IX, by (6) and (8) we have hg.(IX) = O. Thus g* satisfies the sufficient condi
tions that it be best on [0, IX].

Next, to show that g* is best on [IX, 1J we show that the sufficient
conditions hold when [0,1J is replaced by [1X,1J and when hg(x) is
replaced by

for x E [IX, 11

However, since

we have dg.(x)=hg*(x) for XE [IX, 1].
Thus (6), (7), and (8) imply the corresponding conditions for the interval

[IX, 1J, and hence, g* is also best on [IX, 1].
The proof of (b) is similar to (a) and thus is omitted.

COROLLARY 2. If g* is strictly increasing throughout some interval
(IX, 13) c [0,1], then g* =f on (IX, 13).
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for all x E (C(, [3).
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Proof By (8), hg.(x) = 0 for all x E (C(, [3), and therefore,

d
dx hg.(x) = rPg·(x) = 0

Hence, g* == Ion (C(, [3).

COROLLARY 3. II I is nonincreasing on [C(, [3J S; [0, 1J, then g* is
constant on [C(, [3J.

Proof By Corollary 2, g* is not strictly increasing on any subinterval
(a, b) c [C(, [3]. Thus either g* has a discontinuity in (C(, [3), or g* is
constant on [C(, [3].

Suppose that g* has a discontinuity somewhere in [C(, [3]. Then, there
exists atE (C(, [3) such that

g*(x) > g*(y) for all x E (t, [3J and all y E [C(, t).

Thus by (8), hg.(t) = 0, and for any s E (C(, t), t rPg' ~ 0, by (6). Therefore,
for some YE (s, t) c [C(, t), 1ftg.(jI) ~ 0, which implies that 1(jI) ~ g*(jI). But,
since I is nonincreasing on [C(, [3J, we have for all x E (t, [3J that

g*(x) > g*(y) ~ I(y) ~ I(x).

Thus, for all x E (t, [3J, rPg.(x) < 0, and

(contra. (6)).

3. COMPUTATIONAL PRELIMINARIES

Throughout the remainder of this paper assume that I E L 2 , and let the
terms "least-squares approximation" or "best approximation" signify the
best nondecreasing L 2 approximation.

In this section we consider least-squares approximation in three simple
cases, which are the building blocks for least-squares approximation to a
piecewise monotone function, considered in Section 4.

Case 1. Assume that I is monotone on [0, 1].
If I is nondecreasing on [0, 1J, then g* = I is clearly its best

approximation. IfI is nonincreasing on [0, 1J then by Corollary 3 its best
approximation g* is a constant K* on [0, 1J, and by (7) of Theorem 1,

K* =rf(x) dx.
o
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Case 2. Assume thatfis nondecreasing on [0, ()(], and is nondecreasing
on (IX, 1], for some IX E (0, 1).

Let M = ess SUPXE [O,a] f(x), and m = ess intE' (a, I] f(x).
If M ~ m then f is nondecreasing a.e. on [0, 1] and this case reduces to

Case 1. Thus we assume that M> m.
Next, let

H(K)=f
a

f -K+ r
j

f-K.
o J x
f>K f<K

(11)

We shall show that H(K) has a unique zero K*, and thus we can define
a nondecreasing approximation to f on [0, 1] by

{

K*

gK'(X) = '
f(x),

for x E [0, IX] such that f(x) > K*

orfor x E (IX, 1] such that f(x) < K*

elsewhere in [0, 1].

Furthermore, we shall show that gK* is the best approximation to fan
[0, 1].

LEMMA 1. H(K) is a strictly decreasing function of K.

Proof Let Hj(K) = nJ>Kf - K. If K j < Kz < M, then

Hj(Kd= r
a

f-K j >r f-Kz~ r
a

f-Kz=Hj(Kz),Jo 0 Jo
f>Kl f>Kl I>K2

since {x E [0, IX]: f(x) > Kd;2 {x E [0, IX]: f(x) > Kz }, and since K j < M
implies that {XE [0, IX]:f(x»Kd has positive measure.

Thus, HI is strictly decreasing for K < M.
Furthermore, H j (K) = °for all K ~ M.
Similarly, if we let Hz(K) = J~J<Kf -K, then we can show that Hz is

strictly decreasing for K> m, and H z(K) = 0 for all K ~ m.
Thus, H(K) = HI(K) + Hz(K) is strictly decreasing in K.

LEMMA 2. H(K) is continuous in K.

Proof As in Lemma 1 let H(K) = Hj(K) + Hz(K). It suffices to show
that H j and Hz are continuous. Assume that K I < Kz. Then as in
Lemma 1, HI(Kd ~ Hj(Kz). Thus,

640/60/1-5
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IH1(K1)-H1(K2 )1=J: f-Kl-f: f-K 2

f>K[ f>K2

=J: K2 - K 1 + J: f - K 1

f>K2 K2;;.f>K[

~J: K2 -K j + I: K2 -K1 = I: K2 -K1

f>K2 K2;;.f>K[ f>Kj

~r K2 -K1 =a(K2 -K1 )<K2 -KI = IK2 -K1 1·
o

Thus, HI is continuous. Similarly, H 2 is continuous.

LEMMA 3. (a) H(K) has a unique real zero K*, (b) m < K* < M, and
thus gK' is well-defined by (12).

Proof Since H(K) is strictly decreasing it has at most one real zero.
Since H(K) is continuous and

and

H(K) has a unique zero K* in (m, M).

THEOREM 2. Under the above hypothesis, gK' (as defined by (12)) is the
least-squares nondecreasing approximation to f on [0, 1].

Proof By the definitions of K* and gK'

r
l

1Jg.= r
l

f-gK·=H(K*)=O.Jo K Jo

Thus, by Theorem 1, it suffices to show that

f t 1Jg .=ftf-gK'~O
o K 0

{or all t E (0, 1).
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First suppose that t E (0, a]. By (12), /(x);?; g K*(X) for all x E [0,
Hence (13) follows in this case.

Next suppose that t E (a, 1]. Then since H(K*) =°
fl rPgK' = - rrP gK.;?; 0.
o t
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Case 3. Assume that/is nondecreasing on [0, a], and is nonincreasing
on (a, 1] for some aE(O, 1).

This case is similar to Case 2. Thus the corresponding proofs are omitted
and we state the following:

Let

H(K) =r /-K +r/-K.
o ~

f>K

(14)

Then H(K) has a unique zero K*, and thus a nondecreasing approximation
gK* is well-defined by

{

K*

gK*(X) = '
f(x),

for XE [0, a] such thatf(x»K*,

or for x E (a, 1]

elsewhere on [0,1],

and is the best approximation to f on [0, 1].

4. LEAST-SQUARES ApPROXIMATION

The following theorem provides the last tool that we require for the
computation of the best nondecreasing L 2 approximation to f E L 2 . It
shows how to replace f by another function JE L 2 , such that f and J both
have the same best approximation on [0, 1].

THEOREM 3. Let f E L 2 , and let [a, b] <:; [0, 1]. Let g(a.b] denote the best
nondeereasing least-squares approximation to f on [a, b]. Define

on [a, b]

elsewhere on [0, 1].
(16)

Then, / and J both have the same best nondecreasing least-squares
approximation on [0, 1].
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Proof Since gra,b] is the best approximation to j on [a, bJ, Theorem 1
yields

b rJ j = gra,b], (17)
a a

rj~rgra,b] for all xE[a,bJ, (18)
a a

and

rj=rgra,b]' for all x E (a, b) such that
a a

gra,b] is not constant, (19)
in any neighborhood of x.

Now, let g denote the (unique) best nondecreasing least-squares
approximation to I on [0, 1]. We shall show that g is also the best
approximation to j on [0, 1].

For XE [0, aJ,

rj - g= IX I - g,
o 0

for XE [b, IJ,

rj-g=rj-g+rj-g+rj-g
o 0 a b

= rI-g+rgra,b]-g+rI-g=rI-g,
o abO

and for x E (a, b),

r j-g= fI-g+rj-g~ fI-g+r gca,b]-g=fxI-g.
o 0 a 0 a 0

Therefore, since g is the best approximation to j on [0, 1J, by
Theorem 1 we also have

forall xE[O,IJ,

1
1 1

j - g= I I - g = 0,
o 0
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J: f - g= f: f - g=° forall xE[O,a]u[b,l]suchthatg
is not constant in any
neighborhood of x.

Next, for x E (a, b) such that g is not constant in any neighborhood of x
we know by Corollary 3 that f cannot be constant on any neighborhood
of x.

Sincef= gra.bJ on [a, b], for any such x

rf =rgra.bJ =rf,a a a

and thus

fx fa IX fa rx fXf - g = f - g+ f - g= f - g+ f - g= f - g= o.
o b a 0 "a Jo

Hence by Theorem 1, g is the best approximation to f on [0, 1].

DEFINITION 2. Given fEL 2 , and [a, b] S; [0, 1J, the corresponding
function f of the form (16) will be called a refinement off Furthermore, if

f is a refinement of 1, and j is a refinement of 1, then j will also be called
a refinement of f

Note that a refinement off (in the above definition) need not be of
form (16). Thus the second sentence in Definition 2 extends the term
"refinement" to a larger class of functions.

We now have the following corollary to Theorem 3.

COROLLARY 4. Let f E L 2 , and let {Ii} be any sequence of refinements of
f Then,

(a) each fi and f have the same best nondecreasing L 2 approximation
on [0, 1], and

(b) if limi fi = g* exists in L 2 , and is nondecreasing, then g* is the
best nondecreasing L 2 approximation to f on [0, 1].

Corollary 4 is the basis for the following algorithm:

ALGORITHM. Let f E L 2 , and assume that there exists a partition

such that f is monotone on (ai' ai+ d for i = 0, 1, ..., n-1.
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(i) As in Case 1 (in Section 3) find gro, 01]' the best nondecreasing L 2

approximation to f on [0, a 1], and define

on [0,a 1 ]

on(a 1 ,1].

(ii) For i = 1, ..., n - 1, use the methods of Case 2 or 3 (in Section 3)
to find gro,Oi+l] , the best nondecreasing L 2 approximation tofi (and tof) on
[0, ai+1 ], and define

f, _{grO,Oi+l] on [0,a i+1 ]

i+1 - f on (a i+1
, 1].

For i~ 1,/; is nondecreasing on [0, a;], and is monotone on (ai' ao+d
(where fi = f). Thus, the methods of Case 2 or 3 can be applied to find the

desired best approximation gro,Oi+l]'

Each fi defined in this algorithm is a refinement of f, and thus by
Corollary 4, fn is the best approximation to f on [0, 1].

Remark. This algorithm can be extended to the approximation of any
f E L 2 , which is piecewise monotone on a countable partition of [0, 1] in
each of the following cases:

(i) Assume that there exists a strictly monotone sequence {ai};':,o,
where ao= 0, ai < 1 for all i, and ai i 1, such that f is monotone on
(ai' ai+d for i=O, 1, .... Letfi be as in the algorithm above. Thenfi~ g*,
the least-squares approximation to f on [0, 1].

(ii) Assume that f and {a i };':, ° are as in case (i) except that
ai i a* < 1, and that in addition f is monotone on (a*, 1]. Let fi be as in
the algorithm above, let gro*,I] be the least-squares approximation to f on
[a*, 1] (found by the methods of Case 1), and let

{
Iig.=

I gro*,I]

Then as in case (i), gi~g*.

on [0, a*]

on (a*, 1].
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