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1. INTRODUCTION

For 1<p<oo,let L,=L,[0, 1] denote the Banach space of pth power
Lebesgue integrable functions on [0,1] with [ f1l,=({51f17)"". Let
M, L, denote the closed convex lattice of nondecreasing functions in L,,.
Then, g"e M » 1s called a best nondecreasing L, approximation to fe L, if
and only if

If—g*l,<|f—gl, forall geM,.

Throughout this paper, whenever ambiguity will not result, g* may
alternatively be called a best isotone approximation or simply a best
approximation.

For 1< p< o, each fe L, has a best nondecreasng L, approximation.
For 1 < p < oo, the best approximation is unique, using the usual conven-
tion that any two functions in L, are equal if they differ on at most a set
of Lebesgue measure zero. This convention will be employed throughout
this paper.

Constructive solutions to this approximation problem are presented in
[3] for p=1, and in [8] for 1 < p< 0. The L case is considered in
[9, 10].

In Section 2 of this paper we present an alternative characterization of
such best approximations. In Sections 3 and 4 this new characterization is
used to develop algorithms for the computation of best monotone L,
approximation.
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2. CHARACTERIZATION OF BEST MONOTONE APPROXIMATION

From the duality theory [4], for I<p<co, g*eM, is the best
approximation to f € L, if and only if

1
-[0 (g*—g) 9,20 forall geM,, (1)

where for any ge L,
pe=(f—8)|f~gl” > (2)

For p=1, g*¥e M, is a best approximation to f'e L, if and only if there
exists a ¢, € L, with

”¢g*”oo:1 (3>

such that
[ atr=gn=] 1r-e* )

and such that (1) holds for all ge M.
Because of (3), (4) can be replaced by

Po+(x) =sgn(f(x)— g*(x))  whenever flx)#g*(x).  (4a)

Note that for p=1, ¢,« may not be well-defined by (3) and (4).

This characterization of best isotone approximation depends on the
convexity of M,, and does not utilize the monotonicity of its elements. We
shall present an alternative characterization which does utilize the
monotonicity, and which is simpler than the above in the sense that unlike
(1) which depends on f, g* and all ge M,, the necessary and sufficient
conditions of the new characterization theorem depend solely on f and
g* Furthermore, several interesting results follow directly from this
new characterization, including algorithms for the computation of best
approximations.

DerINITION 1. For 1< p< oo let fe L, let g* be a best approximation

to f from M,, and let ¢,. be as defined either by (2) for 1 <p <o, or by
{3) and (4) for p=1 (with the noted possible ambiguity). Then define

hyo(x) = jox b for xe[0,1]. (5)
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TuEOREM 1 (Characterization of Best Nondecreasing Approximation).
For 1< p< o, g* is a best approximation from M, to fe L, if and only if

het(8)=0 forall tel0,1], (6)
hgs(1) =0, (7)
and

if hox(t)>0 then g* is constant in a neighborhood of 1€ (0, 1). (8)

Proof. Smith and Swetits [6] proved the necessity of (6), (7), and (8).
We assume these three conditions and show that (1) holds.
For each ge M, and each positive integer n define

g(x), —n<gx)<n
gu(x)=+ —n, glx)< —n 9)
n, n< g(x).

Then, pointwise g,— g, g,0,« = P+, and |g,d,+ <[gh,+|. By the
Lebesgue Dominated Convergence Theorem,

1 1
J;) gn¢g* - '[0 g¢g*'
Using integration by parts
1 1
| gatee= [ hpde,  bY(D)
0 0

<0 by (6) and since g, is nondecreasing.

Thus,

1
J 86+ <0 forall geM,.
4]

Similarly, we can define g} as in (9) with g* replacing g. Then as above
§o 8¥ e [5 g%+, and integrating by parts

1 1
* == e —_—
fo & bor= fo hgedgy =0, by (6)and (8).
Thus,
1 1
jo 8*¢g*=0>£} g, forall geM,.

Therefore, by (1), g* is the best approximation to f.
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For the case p=1, Theorem | should be interpreted to mean the
following: g* is a best approximation from M, to fe L, if and only if there
exist a ¢,» satisfying (3) and (4) and corresponding 4, satisfying (6), (7),
and (8).

In each of the following corollaries to Theorem 1 assume that 1<
p<o, feL,, and g* is a best nondecreasing L, approximation to f on
[0, 1].

In general g* is not also a best approximation to f on an arbitrary sub-
interval of [0, 1]. However, we have the following:

CoroLLary 1. (a) Let ae(0, 1) such that g* is not constant on any
neighborhood of a. Then, g* is also a best approximation to | on both [0, o]
and [a, 1].

(b) Let O<a<f<l, such that g* is not constani on any
neighborfivod of o, and is also not constant on any neighborhood of 5. Then
g%¥ is also a best approximation to [ on [, f].

Proof. (a) To show that g* is a best approximation on [0, a] we will
show that conditions (6), (7), and (8) of Theorem 1 hold with the interval
[0, 1] replaced by [0, a].

Since g* is best on [0, 1], (6) and (8) imply the corresponding conditions
on [0, «]. Furthermore, since g* is not constant on any neighborhood of
a, by (6) and (8) we have A .(2) =0. Thus g* satisfies the sufficient condi-
tions that it be best on [0, a].

Next, to show that g* is best on [a, 1] we show that the sufficient
conditions hold when [0, 1] is replaced by [«, 1] and when A(x) is
replaced by

4= ¢, for xelal] (10)

However, since
hpe(@) =] =0,
4]

we have £,.(x)=hy.(x) for xe[a, 1]

Thus (6), (7), and (8) imply the corresponding conditions for the interval
[a, 1], and hence, g* is also best on [a, 1].

The proof of (b) is similar to (a) and thus is omitted.

COROLLARY 2. If g* is strictly increasing throughout some interval
(2, BY= [0, 1], then g* = f on (a, B).
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Proof. By (8), h«(x)=0 for all xe («, B), and therefore,

j‘j—c ho(X)=e(x)=0  forall xe (s, f).

Hence, g*=f on (a, f).

COROLLARY 3. If f is nonincreasing on [a, 1[0, 1], then g* is
constant on [a, f.

Proof. By Corollary 2, g* is not strictly increasing on any subinterval
(a, b)c[a, p1. Thus either g* has a discontinuity in (o, f), or g* is
constant on [a, f].

Suppose that g* has a discontinuity somewhere in [a, f]. Then, there
exists a r€ (o, ) such that

g¥(x)> g*(y) forall xe(t, flandall ye[a,t).

Thus by (8), h,«(r)=0, and for any se (o, t), [ #,» <O, by (6). Therefore,
for some je (s, 1) < [, 1), ¢,+(¥) <0, which implies that f(y) < g*(7). But,
since f is nonincreasing on [«, f], we have for all x e (¢, f] that

g¥(x)>g*(7) = f(p) = f(x).
Thus, for all xe (7, B1, ¢, «(x) <0, and

hye(x) = jo b= jtx $,<0  (contra. (6)).

3. COMPUTATIONAL PRELIMINARIES

Throughout the remainder of this paper assume that fe L,, and let the
terms “least-squares approximation” or “best approximation” signify the
best nondecreasing L, approximation.

In this section we consider least-squares approximation in three simple
cases, which are the building blocks for least-squares approximation to a
piecewise monotone function, considered in Section 4.

Case 1. Assume that fis monotone on [0, 1].

If f is nondecreasing on [0,1], then g*=/f is clearly its best
approximation. If f is nonincreasing on [0, 1] then by Corollary 3 its best
approximation g* is a constant K* on [0, 1], and by (7) of Theorem 1,

1
K* = L fx) dx.
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Case 2. Assume that fis nondecreasing on [0, ], and is nondecreasing
on (o, 1], for some xe (0, 1).

Let M =esssup, .o, f(x), and m=essinf, _ 17 f(x).
If M <m then f is nondecreasing a.c. on [0, 1] and this case reduces to
Case 1. Thus we assume that M > m.

Next, let
3 i
H(K):j f—K+Jf [-K (11)
19>K /GE<K

We shall show that H(K) has a unique zero K*, and thus we can define
a nondecreasing approximation to fon [0, 1] by

K*, for x € [0, a1 such that f(x)> K*
gre{x)= or for x e (o, 1] such that f(x) < K* (12)
S(x), elsewhere in [0, 1.

Furthermore, we shall show that g. is the best approximation to f on

o, 11.
Lemma 1. H(K) is a strictly decreasing function of K.

Proof. Let H(K)=[2 .« f— K. If Ky <K, <M, then

HK)=] K> -K>[ f-K=H(K),

0
> K f> Ky f>K;

since {xe[0,a]: f(x)>K,}2{xe[0,a]: f(x)>K,}, and since K;<M
implies that {xe [0, a]: f(x)> K, } has positive measure.

Thus, H, is strictly decreasing for K< M.

Furthermore, H,(K)=0 for all K> M.

Similarly, if we let H)(K)=f, ,_x f—K, then we can show that H, is
strictly decreasing for K> m, and H,{(K)=10 for all K<m.

Thus, H(K)= H,(K)+ H,(K) is strictly decreasing in K.

LemMa 2. H(K) is continuous in K.
Proof. As in Lemma 1 let H(K)= H (K)+ H,(K). It suffices io show

that H, and H, are continuous. Assume that K, < K,. Then as in
Lemma 1, H({K;)= H,(K,). Thus,

640/60/1-5
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H(K)-HK) =] [-K-[ -k

f>K f>K

[ ek k| K

f>Ka Kz f> Ky =Ky
o o
[ K-K+|  f-K
0 0
f>K Kz f> Ky
=4 a o
SI K2—K1+j K2—K1=J Kz—Kl
4] 0 0]
f>K Kz f> K f>K;

<L K,—K,=a(K,~ K;)< K, ~ K, =|K, ~ K;|.
Thus, H, is continuous. Similarly, H, is continuous.

LemMa 3. (a) H(K) has a unique real zero K*, (b) m< K* <M, and
thus g g« is well-defined by (12).

Proof. Since H(K) is strictly decreasing it has at most one real zero.
Since H(K) is continuous and

H(M) = H,(M) + Hy(M) = Hy(M) < Hy(m) =0

and

H(m)=H (m)+ Hy(m)=H,(m)> H(M)=0,
H(K) has a unique zero K* in (m, M).

THEOREM 2. Under the above hypothesis, g« (as defined by (12)) is the
least-squares nondecreasing approximation to f on [0, 1.

Proof. By the definitions of K* and g«
1 1
[ #s=[ f—gr=HE"=0.
0 0
Thus, by Theorem 1, it suffices to show that

t 11 «
fo ¢g,(,=j0f— gx+=0  forall re(0,1).
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First suppose that re(0,a]. By (12), flx)}> gx«{x) for all xe[0, 1]
Hence {13) follows in this case.
Next suppose that e («, 1]. Then since H(K*)=0

[b= [ be>0

Case 3. Assume that f'is nondecreasing on [0, a], and is nonincreasing
on (a, 1] for some ae (0, 1).

This case is similar to Case 2. Thus the corresponding proofs are omitted
and we state the following:

Let

H(K):[: f—K+f1f—K. (14)
F>K !

Then H(K) has a unique zero K*, and thus a nondecreasing approximation
gk« 18 well-defined by

K*, for xe[0, ] such that f(x)> K*,

gr+(x)= orfor xe(a, 1] (153
f(x), elsewhere on [0,1],

and is the best approximation to fon [0, 17].

4. LEAST-SQUARES APPROXIMATION

The following theorem provides the last tool that we require for the
computation of the best nondecreasing L, approximation to feL,. It
shows how to replace f by another function fe L,, such that f and f both
have the same best approximation on [0, 1].

THEOREM 3. Let fe L,, and let [a, b] S [0, 1]. Let g, ,y denote the best
nondecreasing least-squares approximation to f on [a, b]. Define

7 gE‘a,b] s on [a5 b]
= i
7 {ﬁ elsewhere on [0, 1]. (16)

Then, [ and f both have the same best nondecreasing least-squares
approximation on [0, 1].
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Proof. Since gf, ;1 is the best approximation to f on [a, b], Theorem 1
yields

f:’f=jab 8tan1s (17)
jf;j gt forall xel[ab], (18)

and

j fzj g%,5, forall xe(a b)such that
g{. »71s not constant, (19)
in any neighborhood of x.

Now, let g denote the (unique) best nondecreasing least-squares
approximation to f on [0,1]. We shall show that g is also the best
approximation to fon [0, 1].

For xe [0, a],

for xe[b, 1],

and for x € (q, b),
| r-a=[i-e+[r-a>[ 7+ stun-2-[ -2

Therefore, since g is the best approximation to f on [0,1], by
Theorem 1 we also have

ff—g>f f—g=0  forall xe[0,1],
4] 0



MONOTONE APPROXIMATION IN L, [0, 1] &7

f f—gj=j 7—g=0 forall xe[0,a]u[h, 1]suchthats
0 0 is not constant in any
neighborhood of x.

Next, for x e (g, b) such that g is not constant in any neighborhood of x
we know by Corollary 3 that f cannot be constant on any. neighborhood
of x.

Since f= g}, ,; on [a, b], for any such x

[ ston=[ 7

and thus

| r-g=[7-g+[ r-a=[7-e+[ 7-2=] 7-z=0

a Ya J0
Hence by Theorem 1, g is the best approximation to fon [0, 1].

DerFiNITION 2, Given feL,, and [a, b]<[0, 1], the corresponding
function f of the form (16) will be called a refinement of /. Furthermore, if

fis a refinement of £, and f is a refinement of £, then f will also be cailed
a refinement of f.

Note that a refinement of f (in the above definition) need not be of the
form (16). Thus the second sentence in Definition 2 extends the term
“refinement” to a larger class of functions.

We now have the following corollary to Theorem 3.

COROLLARY 4. Let feL,, and let {f;} be any sequence of refinements of
- Then,

(a) each f; and [ have the same best nondecreasing L, approximation
on [0, 1], and

(b} if lim, f,=g* exists in L,, and is nondecreasing, then g% is the
best nondecreasing L, approximation to f on [0, 1].

Corollary 4 is the basis for the following algorithm:
ALGORITHM. Let f€ L,, and assume that there exists a partition
O=as<a;< - <aq,=1

such that f is monotone on (a;, a;, ) for i=0,1,..,n—1.
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(i) As in Case 1 (in Section 3) find g, .7, the best nondecreasing L,
approximation to f on [0, a,], and define

f — {gz[ko,al] on [0! al]
s on(ay, 11.

(ii) For i=1,..,n—1, use the methods of Case 2 or 3 (in Section 3)

to find g%, ... 1. the best nondecreasing L, approximation to f; (and to f) on
[0, a;, ], and define

— {ga[ko-aiﬂ] on [0, a;, 1]
ANV on (ar.,,1].

For iz 1, f; is nondecreasing on [0, a;], and is monotone on (a;, a,, 1)
(where f,= [). Thus, the methods of Case 2 or 3 can be applied to find the
desired best approximation gy .. 1-

Each f; defined in this algorithm is a refinement of f, and thus by
Corollary 4, f,, is the best approximation to f on [0, 1].

Remark. This algorithm can be extended to the approximation of any
feL,, which is piecewise monotone on a countable partition of [0, 1] in
each of the following cases:

(iy Assume that there exists a strictly monotone sequence {a,} ,,
where a,=0,a;<1 for all i and 4,11, such that f is monotone on
(a;,a;,,) for i=0,1, ... Let f; be as in the algorithm above. Then f; - g*,
the least-squares approximation to fon [0, 1].

(i) Assume that f and {a,}2, are as in case (i) except that
a;Ta* <1, and that in addition f is monotone on (a*, 1]. Let f; be as in
the algorithm above, let gf,. ;7 be the least-squares approximation to f on
[a*, 1] (found by the methods of Case 1), and let

{f,— on [0, a*]
8=

gt 17 on (a*, 1].

Then as in case (i), g; — g*.
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